If $L_1$ and $L_2$ are the lengths of the first and second resonating air columns in a resonance tube, then the wavelength of the note produced is

  • A

    $2(L_2 + L_1)$

  • B

    $2(L_2 - L_1)$

  • C

    $2\left( {{L_2} - \frac{{{L_1}}}{2}} \right)$

  • D

    $2\left( {{L_2} + \frac{{{L_1}}}{2}} \right)$

Similar Questions

Two open organ pipes of fundamental frequencies $n_1$ and $n_2$ are joined in series.  The fundamental frequency of the new pipe so obtained will be

The length of open organ pipe is $L$ and fundamental frequency is $f$. Now it is immersed into water upto half of its length now the frequency of organ pipe will be

A train is moving towards a stationary observer. Which of the following curve best represents the frequency received by observer $f$ as a function of time ?

A closed organ pipe has length $L$ , the air in it is vibrating in third overtone with maximum amplitude $'a'$ . The amplitude at distance $\frac {L}{7}$ from closed end of the pipe is

Four tuning forks of frequencies $200,201, 204$ and $206\, Hz$ are sounded together.  The beat frequency will be