A train is moving towards a stationary observer. Which of the following curve best represents the frequency received by observer $f$ as a function of time ?

  • A
    816-a1293
  • B
    816-b1293
  • C
    816-c1293
  • D
    816-d1293

Similar Questions

When a wave travels in a medium, the particle displacement is given by : $y = a\,\sin \,2\pi \left( {bt - cx} \right)$ where $a, b$ and $c$ are constants. The maximum particle velocity will be twice the wave velocity if

A transverse harmonic wave on a string is described by $y = 3\sin \left( {36t + 0.018x + \frac{\pi }{4}} \right)$ where $x$ and $y$ are in $cm$ and $t$ in $s$. The least distance between two successive crests in the wave is .... $m$

A car $P$ approaching a crossing at a speed of $10\,m/s$ sounds a horn of frequency $700 \,Hz$ when $40\,m$ in front of the crossing. Speed of sound in air is $340\,m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\,m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is ..... $Hz$

A small source of sound moves on a circle as shown in the figure and an observer is standing on $O.$ Let $n_1,\, n_2$ and $n_3$ be the frequencies heard when the source is at $A, B$ and $C$ respectively. Then

A string of mass $2.5\, kg$ under some tension. The length of the stretched string is $20\, m$. If the transverse jerk produced at one end of the string takes $0.5\, s$ to reach the  other end, tension in the string is .... $N$