If $0 < x < \frac{\pi }{2},$ then
$\frac{2}{\pi } > \frac{{\sin \,x}}{x}$
$\frac{{\sin \,x}}{x} < 1$
$\frac{{\sin \,x}}{x} < 0.5$
$\frac{{\sin \,x}}{x} > 1$
The function $f\left( x \right) = \left| {\sin \,4x} \right| + \left| {\cos \,2x} \right|$, is a periodic function with period
Let $f(\theta ) = \sin \theta (\sin \theta + \sin 3\theta )$, then $f(\theta )$
Let $N$ be the set of positive integers. For all $n \in N$, let $f_n=(n+1)^{1 / 3}-n^{1 / 3} \text { and }$ $A=\left\{n \in N: f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ Then,
Let $S=\{1,2,3,4,5,6\}$. Then the number of oneone functions $f: S \rightarrow P(S)$, where $P(S)$ denote the power set of $S$, such that $f(n) \subset f(m)$ where $n < m$ is $..................$