If $C = 2\cos \theta $, then the value of the determinant $\Delta = \left| {\,\begin{array}{*{20}{c}}C&1&0\\1&C&1\\6&1&C\end{array}\,} \right|$ is
$\frac{{\sin 4\theta }}{{\sin \theta }}$
$\frac{{2{{\sin }^2}2\theta }}{{\sin \theta }}$
$4{\cos ^2}\theta \,(2\cos \theta - 1)$
None of these
Let $\omega $ be a complex number such that $2\omega + 1 = z$ where $z = \sqrt { - 3} $ . If $\left| {\begin{array}{*{20}{c}}1&1&1\\1&{ - {\omega ^2} - 1}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^7}}\end{array}} \right| = 3k$ then $k$ is equal to :
The value of $\left| {\begin{array}{*{20}{c}}
1&x&y\\
2&{\sin x + 2x}&{\sin y + 2y}\\
3&{\cos x + 3x}&{\cos y + 3y}
\end{array}} \right|$ is
The system of linear equations $3 x-2 y-k z=10$; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ is inconsistent if
The value of $'a'$ for which the system of equation $a^3x + (a + 1)^3y + (a + 2)^3 z = 0$ ; $ax + (a + 1)y + (a + 2)z = 0$ ; $x + y + z = 0$ has a non-zero solution is :-
The existance of the unique solution of the system of equations$2x + y + z = \beta $ , $10x - y + \alpha z = 10$ and $4x+ 3y-z =6$ depends on