If $\alpha $ and $\beta - $ particles are moving with equal velocity perpendicular to the flux density $B$, then the radii of their paths will be
unequal and in the opposite direction
equal and in the opposite direction
unequal and in the same direction
equal and in the same direction
A charged particle is released from rest in a region of steady and uniform electric and magnetic fields which are parallel to each other. The particle will move in a
An electron is projected with velocity $\vec v$ in a uniform magnetic field $\vec B$ . The angle $\theta$ between $\vec v$ and $\vec B$ lines between $0^o$ and $\frac{\pi}{2}$ . It velocity $\vec v$ vector returns to its initial value in time interval of
A charged particle of charge $q$ and mass $m$, gets deflected through an angle $\theta$ upon passing through a square region of side $a$, which contains a uniform magnetic field $B$ normal to its plane. Assuming that the particle entered the square at right angles to one side, what is the speed of the particle?
A current carrying long solenoid is placed on the ground with its axis vertical. A proton is falling along the axis of the solenoid with a velocity $v$. When the proton enters into the solenoid, it will
A particle of specific charge (charge/mass) $\alpha$ starts moving from the origin under the action of an electric field $\vec E = {E_0}\hat i$ and magnetic field $\vec B = {B_0}\hat k$. Its velocity at $(x_0 , y_0 , 0)$ is ($(4\hat i + 3\hat j)$ . The value of $x_0$ is: