If $\alpha $ and $\beta  - $ particles are moving with equal velocity perpendicular to the flux density $B$, then the radii of their paths will be

  • A

    unequal and in the opposite direction

  • B

    equal and in the opposite direction

  • C

    unequal and in the same direction

  • D

    equal and in the same direction

Similar Questions

A charged particle is released from rest in a region of steady and uniform electric and magnetic fields which are parallel to each other. The particle will move in a

An electron is projected with velocity $\vec v$ in a uniform magnetic field $\vec B$ . The angle $\theta$  between $\vec v$ and $\vec B$  lines between $0^o$ and $\frac{\pi}{2}$ . It velocity $\vec v$ vector returns to its initial  value in time interval of 

A charged particle of charge $q$ and mass $m$, gets deflected through an angle $\theta$ upon passing through a square region of side $a$, which contains a uniform magnetic field $B$ normal to its plane. Assuming that the particle entered the square at right angles to one side, what is the speed of the particle?

  • [KVPY 2010]

A current carrying long solenoid is placed on the ground with its axis vertical. A proton is falling along the axis of the solenoid with a velocity $v$. When the proton enters into the solenoid, it will

A particle of specific charge (charge/mass) $\alpha$ starts moving from the origin under the action of an electric field $\vec E = {E_0}\hat i$ and magnetic field $\vec B = {B_0}\hat k$. Its velocity at $(x_0 , y_0 , 0)$ is ($(4\hat i + 3\hat j)$ . The value of $x_0$ is: