A particle of specific charge (charge/mass) $\alpha$ starts moving from the origin under the action of an electric field $\vec E = {E_0}\hat i$ and magnetic field $\vec B = {B_0}\hat k$. Its velocity at $(x_0 , y_0 , 0)$ is ($(4\hat i + 3\hat j)$ . The value of $x_0$ is: 

  • A

    $\frac{{13}}{2}\frac{{\alpha {E_0}}}{{{B_0}}}$

  • B

    $\frac{{16\,\alpha {B_0}}}{{{E_0}}}$

  • C

    $\frac{{25}}{{2\alpha {E_0}}}$

  • D

    $\frac{{5\alpha }}{{2{B_0}}}$

Similar Questions

Consider a thin metallic sheet perpendicular to the plane of the paper moving with speed $'v'$ in a uniform magnetic field $B$ going into the plane of the paper (See figure). If charge densities ${\sigma _1}$ and ${\sigma _2}$ are induced on the left and right surfaces, respectively, of the sheet then (ignore fringe effects)

  • [JEE MAIN 2016]

If a particle of charge ${10^{ - 12}}\,coulomb$ moving along the $\hat x - $ direction with a velocity ${10^5}\,m/s$ experiences a force of ${10^{ - 10}}\,newton$ in $\hat y - $ direction due to magnetic field, then the minimum magnetic field is

Write Lorentz force equation.

A beam of ions with velocity $2 \times {10^5}\,m/s$ enters normally into a uniform magnetic field of $4 \times {10^{ - 2}}\,tesla$. If the specific charge of the ion is $5 \times {10^7}\,C/kg$, then the radius of the circular path described will be.......$m$

A proton (mass $ = 1.67 \times {10^{ - 27}}\,kg$ and charge $ = 1.6 \times {10^{ - 19}}\,C)$ enters perpendicular to a magnetic field of intensity $2$ $weber/{m^2}$ with a velocity $3.4 \times {10^7}\,m/\sec $. The acceleration of the proton should be