If $\frac{d}{{dx}}\,G\left( x \right) = \frac{{{e^{\tan \,x}}}}{x},\,x \in \left( {0,\pi /2} \right)$, then $\int\limits_{1/4}^{1/2} {\frac{2}{x}} .{e^{\tan \,\left( {\pi \,{x^2}} \right)}}dx$ is equal to

  • [AIEEE 2012]
  • A

    $G\left( {\pi /4} \right) - G\left( {\pi /16} \right)$

  • B

    $2\left[ {G\left( {\pi /4} \right) - G\left( {\pi /16} \right)} \right]$

  • C

    $\pi \left[ {G\left( {1/2} \right) - G\left( {1/4} \right)} \right]$

  • D

    $G\left( {1/\sqrt 2 } \right) - G\left( {1/2} \right)$

Similar Questions

$\int\limits_{ - 1}^{\frac{3}{2}} {|x\sin \pi x|dx} $ equals

The minimum value of the function $f(x)=\int \limits_0^2 e^{|x-t|} d t$ is

  • [JEE MAIN 2023]

The number of continuous functions $f:[0,1] \rightarrow(-\infty, \infty)$ satisfying the condition $\int \limits_0^1(f(x))^2 dx =2 \int_0^1 f( x ) dx$ is

  • [KVPY 2021]

Suppose $f(x)$ is a differentiable real function such that $f(x) + f'(x) \le 1$ for all $x$ and $f(0)=0$ . The largest possible value of $f(1)$ is

If ${I_1} = \int_0^1 {{2^{{x^2}}}dx,\;} {I_2} = \int_0^1 {{2^{{x^3}}}dx} ,\;{I_3} = \int_1^2 {{2^{{x^2}}}dx} $,${I_4} = \int_1^2 {{2^{{x^3}}}dx} $, then

  • [AIEEE 2005]