If $f(\theta ) =\left| {\begin{array}{*{20}{c}}
1&{\cos {\mkern 1mu} \theta }&1\\
{ - \sin {\mkern 1mu} \theta }&1&{ - \cos {\mkern 1mu} \theta }\\
{ - 1}&{\sin {\mkern 1mu} \theta }&1
\end{array}} \right|$ and $A$ and $B$ are respectively the maximum and the minimum values of $f(\theta )$, then $(A , B)$ is equal to
$(3, - 1)$
$( 4,2-\sqrt 2 )$
$(2 + \sqrt 2 ,2 - \sqrt 2 )$
$(2 + \sqrt 2 , - 1)$
If $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ and $\alpha \ne \frac{1}{2},$ then
The value of $\left| {\begin{array}{*{20}{c}}
{\sin \alpha }&{\cos \alpha }&{\sin \left( {\alpha + \gamma } \right)}\\
{\sin \beta }&{\cos \beta }&{\sin \left( {\beta + \gamma } \right)}\\
{\sin \delta }&{\cos \delta }&{\sin \left( {\gamma + \delta } \right)}
\end{array}} \right|$ is
Let $\lambda $ be a real number for which the system of linear equations $x + y + z = 6$
; $4x + \lambda y - \lambda z = \lambda - 2$ ; $3x + 2y -4z = -5$ Has indefinitely many solutions. Then $\lambda $ is a root of the quadratic equation
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}x&0&8\\4&1&3\\2&0&x\end{array}\,} \right| = 0$ are equal to
If ${\Delta _1} = \left| {\,\begin{array}{*{20}{c}}x&b&b\\a&x&b\\a&a&x\end{array}\,} \right|$ and ${\Delta _2} = \left| {\,\begin{array}{*{20}{c}}x&b\\a&x\end{array}\,} \right|$ are the given determinants, then