If $\cos \,\alpha + \cos \,\beta = \frac{3}{2}$ and $\sin \,\alpha + \sin \,\beta = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta + \cos \,2\theta $ is equal to
$\frac{3}{5}$
$\frac{7}{5}$
$\frac{4}{5}$
$\frac{8}{5}$
General solution of the equation $\cot \theta - \tan \theta = 2$ is
If $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, then the general value of $\theta $ is
The equation $3{\sin ^2}x + 10\cos x - 6 = 0$ is satisfied, if
If $\sin 5x + \sin 3x + \sin x = 0$, then the value of $x$ other than $0$ lying between $0 \le x \le \frac{\pi }{2}$ is
If $m$ and $n$ respectively are the numbers of positive and negative value of $\theta$ in the interval $[-\pi, \pi]$ that satisfy the equation $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$, then $mn$ is equal to $.............$.