If $\vec A = 2\hat i + \hat j - \hat k,\,\vec B = \hat i + 2\hat j + 3\hat k$ and $\vec C = 6\hat i - 2j - 6\hat k$ then the angle between $(\vec A + \vec B)$ and $\vec C$ wil be ....... $^o$
$30$
$45$
$60$
$90$
The angle between vectors $(\overrightarrow {\rm{A}} \times \overrightarrow {\rm{B}} )$ and $(\overrightarrow {\rm{B}} \times \overrightarrow {\rm{A}} )$ is
Vectors $a \hat{i}+b \hat{j}+\hat{k}$ and $2 \hat{i}-3 \hat{j}+4 \hat{k}$ are perpendicular to each other when $3 a+2 b=7$, the ratio of a to $b$ is $\frac{x}{2}$. The value of $x$ is $..............$
Two vector $A$ and $B$ have equal magnitudes. Then the vector $\mathop A\limits^ \to + \mathop B\limits^ \to $ is perpendicular to
Explain the kinds of multiplication operations for vectors.
A particle moves from position $3\hat i + 2\hat j - 6\hat k$ to $14\hat i + 13\hat j + 9\hat k$ due to a uniform force of $(4\hat i + \hat j + 3\hat k)\,N.$ If the displacement in meters then work done will be.........$J$