If $\sin \,\theta  + \sqrt 3 \cos \,\theta  = 6x - {x^2} - 11,x \in R$ , $0 \le \theta  \le 2\pi $ , then the equation has solution for

  • A

    one value of $x$

  • B

    two value of $x$

  • C

    infinite value of $x$

  • D

    no value of $x$

Similar Questions

The solution of equation ${\cos ^2}\theta + \sin \theta + 1 = 0$ lies in the interval

  • [IIT 1992]

The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is

All the pairs $(x, y)$ that satisfy the inequality ${2^{\sqrt {{{\sin }^2}{\kern 1pt} x - 2\sin {\kern 1pt} x + 5} }}.\frac{1}{{{4^{{{\sin }^2}\,y}}}} \leq 1$ also Satisfy the equation

  • [JEE MAIN 2019]

If $\cos \,\alpha  + \cos \,\beta  = \frac{3}{2}$ and $\sin \,\alpha  + \sin \,\beta  = \frac{1}{2}$ and $\theta $ is the the arithmetic mean of $\alpha $ and $\beta $ , then $\sin \,2\theta  + \cos \,2\theta $ is equal to 

  • [JEE MAIN 2015]

The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is

  • [JEE MAIN 2020]