If $x = {\log _2}\left( {\sqrt {56 + \sqrt {56 + \sqrt {56 + .... + \infty } } } } \right)$ then
$x < 0$
$0 < x < 2$
$2 < x < 4$
$3 < x < 4$
Greatest value of the function, $f(x) = - 1 + \frac{2}{{{2^x}^2 + 1}}$ is
Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $f : A \rightarrow A$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in A$ with $m \cdot n \in A$ is equal to $...............$.
If the graph of non-constant function is symmetric about the point $(3,4)$ , then the value of $\sum\limits_{r = 0}^6 {f(r) + f(3)} $ is equal to
If $f(x)$ be a polynomial function satisfying $f(x).f (\frac{1}{x}) = f(x) + f (\frac{1}{x})$ and $f(4) = 65$ then value of $f(6)$ is
Which pair $(s)$ of function $(s)$ is/are equal ?
where $\{x\}$ and $[x]$ denotes the fractional part $\&$ integral part functions.