If $a = \sin \frac{\pi }{{18}}\sin \frac{{5\pi }}{{18}}\sin \frac{{7\pi }}{{18}}$ and $x$ is the solution of the equatioin $y = 2\left[ x \right] + 2$ and $y = 3\left[ {x - 2} \right] ,$ where $\left[ x \right]$ denotes the integral part of $x,$ then $a$ is equal to :-
$\left[ x \right]$
$\frac{1}{{\left[ x \right]}}$
$2\left[ x \right]$
${\left[ x \right]^2}$
If $\cot (\alpha + \beta ) = 0,$ then $\sin (\alpha + 2\beta ) = $
If $\cos p\theta = \cos q\theta ,p \ne q$, then
The number of solutions to $\sin x=\frac{6}{x}$ with $0 \leq x \leq 12 \pi$ is
The general solution of the trigonometric equation $tan\, x + tan \,2x + tan\, 3x = tan \,x · tan\, 2x · tan \,3x$ is
The most general value of $\theta $ satisfying the equations $\sin \theta = \sin \alpha $ and $\cos \theta = \cos \alpha $ is