બે શાંન્ત ગણ $A$ અને $B$ આપેલ છે કે જેથી $n(A) = 2, n(B) = 3 $ હોય તો $A$ થી $B$ પરના કુલ સંબંધની સંખ્યા મેળવો.
$4$
$8$
$64$
એકપણ નહી.
જો $A=\{1,2\}$ અને $B=\{3,4\}$ તો $A$ થી $B$ ના સંબંધની સંખ્યા શોધો.
$R$ એ $Z$ પર $R = \{ (a,b):a,b \in Z,a - b$ એ પૂર્ણક છે. $\} $ દ્વારા વ્યાખ્યાયિત છે. $R$ નો પ્રદેશ અને વિસ્તાર મેળવો.
$A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ અને $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ તો શું નીચેના વિધાનો સત્ય છે ? $f$ એ $A$ થી $B$ નો સંબંધ છે. પ્રત્યેક વિકલ્પમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
જો $A=\{1,2,3,4,5,6\}$, $R=\{(x, y): y=x+1\}$ થાય તે રીતે સંબંધ $R, A$ થી $A$ પર વ્યાખ્યાયિત છે, તો $R$ નો પ્રદેશ, સહપ્રદેશ તેમજ વિસ્તાર મેળવો.
$A=\{1,2,3,5\}$ અને $B=\{4,6,9\} .$ $R = \{ (x,y):$ $x$ અને $y$ નો તફાવત અયુગ્મ સંખ્યા છે ${\rm{; }}x \in A,y \in B\} $ થાય - તે રીતે સંબંધ $A$ થી $B$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો.