Fundamental frequency of sonometer wire is $n$. If the length, tension and diameter of wire are tripled, the new fundamental frequency is
$\frac{n}{{\sqrt 3 }}$
$\frac{n}{{2\sqrt 3 }}$
$n \sqrt 3$
$\frac{n}{{3\sqrt 3 }}$
Two waves represented by ${y_1} = a\sin \frac{{2\pi}}{\lambda }\left( {vt - x} \right)$ and ${y_2} = a\cos \frac{{2\pi }}{\lambda }\left( {vt - x} \right)$ are superposed. The resultant wave has an amplitude equal to
A wave travelling along the $x-$ axis is described by the equation $y\ (x, t )\ =\ 0.005\ cos\ (\alpha x - \beta t )$ . If the wavelength and the time period of the wave in $0.08\ m$ and $2.0\ s$ respectively then $\alpha $ and $\beta $ in appropriate units are
A person speaking normally produces a sound intensity of $40\, dB$ at a distance of $1\, m$. If the threshold intensity for reasonable audibility is $20\,dB$, the maximum distance at which he can be heard clearly is ..... $m$
A tuning of fork of frequency $392\, Hz$, resonates with $50\, cm$ length of a string under tension $(T)$. If length of the string is decreased by $2\%$, keeping the tension constant, the number of beats heard when the string and the tuning fork made to vibrate simultaneously is
Dependence of disturbances due to two waves on time is shown in the figure. The ratio of their intensities $I_1 / I_2$ will be