A person speaking normally produces a sound intensity of $40\, dB$ at a distance of $1\, m$. If the threshold intensity for reasonable audibility is $20\,dB$, the maximum distance at which he can be heard clearly is ..... $m$
$4$
$5$
$10$
$20$
Two cars $A$ and $B$ are moving in the same direction with speeds $36\,km/hr$ and $54\,km/hr$ respectively. Car $B$ is ahead of $A$. If $A$ sounds horn of frequency $1000\,Hz$ and the speed of sound in air is $340\,m/s$, the frequency of sound received by the driver of car $B$ is .................. $\mathrm{Hz}$
Two waves represented by ${y_1} = a\sin \frac{{2\pi}}{\lambda }\left( {vt - x} \right)$ and ${y_2} = a\cos \frac{{2\pi }}{\lambda }\left( {vt - x} \right)$ are superposed. The resultant wave has an amplitude equal to
When two sound sources of the same amplitude but of slightly different frequencies $v_1$ and $v_2$ are sounded simultaneously, the sound one hears has a frequency equal to
A string of mass $2.5\ kg$ is under a tension of $200\ N$ . The length of the stretched string is $20.0\ m$ . If the transverse jerk is struck at one end of the string, the disturbance will reach the other end in .... $\sec$
A pulse shown here is reflected from the rigid wall $A$ and then from free end $B.$ The shape of the string after these $2$ reflection will be