Function $f(x)={\left( {1 + \frac{1}{x}} \right)^x}$ then Domain of $f (x)$ is
$(-1, 0) \cup (0, \infty )$
$R - { 0 }$
$(-\infty , -1) \cup (0, \infty )$
$(0, \infty )$
Let $x$ denote the total number of one-one functions from a set $A$ with $3$ elements to a set $B$ with $5$ elements and $y$ denote the total number of one-one functions from the set $A$ to the set $A \times B$. Then ...... .
Let $f\left( n \right) = \left[ {\frac{1}{3} + \frac{{3n}}{{100}}} \right]n$ , where $[n]$ denotes the greatest integer less than or equal to $n$. Then $\sum\limits_{n = 1}^{56} {f\left( n \right)} $ is equal to
Let $f(x)$ be a non-constant polynomial with real coefficients such that $f\left(\frac{1}{2}\right)=100$ and $f(x) \leq 100$ for all real $x$. Which of the following statements is NOT necessarily true?
Numerical value of the expression $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ for $x = - 3$ is
If $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$ then $f\left(\frac{1}{2023}\right)+f\left(\frac{2}{2023}\right)+\ldots \ldots . .+f\left(\frac{2022}{2023}\right)$ is equal to