From the equation $\tan \theta = \frac{{rg}}{{{v^2}}}$, one can obtain the angle of banking $\theta $ for a cyclist taking a curve (the symbols have their usual meanings). Then say, it is

  • A

    Both dimensionally and numerically correct

  • B

    Neither numerically nor dimensionally correct

  • C

    Dimensionally correct only

  • D

    Numerically correct only

Similar Questions

Time $(T)$, velocity $(C)$ and angular momentum $(h)$ are chosen as fundamental quantities instead of mass, length and time. In terms of these, the dimensions of mass would be

  • [JEE MAIN 2017]

If $A$ and $B$ are two physical quantities having different dimensions then which of the following can't denote a physical quantity?

A length-scale $(l)$ depends on the permittivity $(\varepsilon)$ of a dielectric material. Boltzmann constant $\left(k_B\right)$, the absolute temperature $(T)$, the number per unit volune $(n)$ of certain charged particles, and the charge $(q)$ carried by each of the particless. Which of the following expression($s$) for $l$ is(are) dimensionally correct?

($A$) $l=\sqrt{\left(\frac{n q^2}{\varepsilon k_B T}\right)}$

($B$) $l=\sqrt{\left(\frac{\varepsilon k_B T}{n q^2}\right)}$

($C$)$l=\sqrt{\left(\frac{q^2}{\varepsilon n^{2 / 3} k_B T}\right)}$

($D$) $l=\sqrt{\left(\frac{q^2}{\varepsilon n^{1 / 3} k_B T}\right)}$

  • [IIT 2016]

Density of a liquid in $CGS$ system is $0.625 g/c{m^3}$. What is its magnitude in $SI $ system

The potential energy of a particle varies with distance $x$ from a fixed origin as $U=\frac{A \sqrt{x}}{x^2+B}$, where $A$ and $B$ are dimensional constants then dimensional formula for $A B$ is