For the ellipse $3{x^2} + 4{y^2} = 12$, the length of latus rectum is

  • A

    $\frac{3}{2}$

  • B

    $3$

  • C

    $\frac{8}{3}$

  • D

    $\sqrt {\frac{3}{2}} $

Similar Questions

The length of the chord of the ellipse $\frac{x^2}{4}+\frac{y^2}{2}=1$, whose mid-point is $\left(1, \frac{1}{2}\right)$, is:

  • [JEE MAIN 2025]

The line $x\cos \alpha + y\sin \alpha = p$ will be a tangent to the conic $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if

Let $\theta$ be the acute angle between the tangents to the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{1}=1$ and the circle $x^{2}+y^{2}=3$ at their point of intersection in the first quadrant. Then $\tan \theta$ is equal to :

  • [JEE MAIN 2021]

An ellipse $\frac{\left(x-x_0\right)^2}{a^2}+\frac{\left(y-y_0\right)^2}{b^2}=1$, $a > b$, is tangent to both $x$ and $y$ axes and is placed in the first quadrant. Let $F_1$ and $F_2$ be two foci of the ellipse and $O$ be the origin with $OF _1 < OF _2$. Suppose the triangle $OF _1 F _2$ is an isosceles triangle with $\angle OF _1 F _2=120^{\circ}$. Then the eccentricity of the ellipse is

  • [KVPY 2021]

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$, is .............. $\mathrm{sq. \,units}$

  • [IIT 2003]