For a spherical shell
If potential inside it is zero then it necessarily electrically neutral
electric field in a charged conducting spherical shell can be zero only when the charge is uniformly distributed.
electric potential due to induced charges at a point inside it will always be zero
none of these
If some charge is given to a solid metallic sphere, the field inside remains zero and by Gauss's law all the charge resides on the surface. Now, suppose that Coulomb's force between two charges varies as $1 / r^{3}$. Then, for a charged solid metallic sphere
A conducting sphere of radius $r$ has a charge. Then
Charges $Q, 2Q$ and $-Q$ are given to three concentric conducting shells $A, B$ and $C$ respectively as shown the ratio of charges on inner and outer surfaces of shell $C$ will be
For the situation shown in the figure below, mark out the correct statement
Sixty four conducting drops each of radius $0.02 m$ and each carrying a charge of $5 \,\mu C$ are combined to form a bigger drop. The ratio of surface density of bigger drop to the smaller drop will be ............