For a series $S = 1 -2 + 3\, -\, 4 … n$ terms,
Statement $-1$ : Sum of series always dependent on the value of $n$ , i.e. whether it is even or odd.
Statement $-2$ : Sum of series is $-\frac {n}{2}$ when value of $n$ is any even integer
Statement $-1$ is true, statement $-2$ is true but statement $-1$ is not the correct explanation for statement $-2$
Statement $-1$ is true, statement $-2$ is false
Statement $-1$ is false, statement $-2$ is true
Both statements are true, and statement $-1$ is the true explanation of statement $-2$
If the first term of an $A.P. $ be $10$, last term is $50$ and the sum of all the terms is $300$, then the number of terms are
Let ${a_1},{a_2},.......,{a_{30}}$ be an $A.P.$, $S = \sum\limits_{i = 1}^{30} {{a_i}} $ and $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $.If ${a_5} = 27$ and $S - 2T = 75$ , then $a_{10}$ is equal to
Between $1$ and $31, m$ numbers have been inserted in such a way that the resulting sequence is an $A. P.$ and the ratio of $7^{\text {th }}$ and $(m-1)^{\text {th }}$ numbers is $5: 9 .$ Find the value of $m$
Let $x _1, x _2 \ldots ., x _{100}$ be in an arithmetic progression, with $x _1=2$ and their mean equal to $200$ . If $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$, then the mean of $y _1, y _2$, $y _{100}$ is