For a given reaction ${t_{1/2}} = \frac{1}{{Ka}}.$. The order of the reaction is
$1$
$0$
$3$
$2$
The reaction $2NO + Br_2 \rightarrow 2NOBr,$ follows the mechanism given below
$(I)$ $NO + Br_2 \rightleftharpoons NOBr_2 $ ........ Fast
$(II)$ $NOBr_2 + NO \rightarrow 2NOBr$ ......... Slow
The overall order of this reaction is
Consider the following gas-phase reaction.
$2HI(g) \longrightarrow H_2(g) + I_2(g)$
and the following experimental data obtained at $555\, K$, What is the order of the reaction with respect to $HI$ $(g)$ ?
$[HI]$, $M$ | rate, $Ms^{-1}$ |
$0.0500$ | $8.80 \times {10^{ - 10}}$ |
$0.1000$ | $3.52 \times {10^{ - 9}}$ |
$0.1500$ | $7.92 \times {10^{ - 9}}$ |
For the following reaction: $NO_2(g) + CO(g) \to NO(g) + CO_2(g)$, the rate law is: Rate $= k \,[NO_2]^2$. If $0.1\,mole$ of gaseous carbon monoxide is added at constant temperature to the reaction mixture which of the following statements is true?
For the hypothetical reaction $2X + G \to Q + 2M$ , the rate expression is $\frac{{d\left[ Q \right]}}{{dt}} = k{\left[ X \right]^2}$ . Which of the following is the most likely mechanism ?
Reaction : $KCl{O_3} + 6FeS{O_4} + 3{H_2}S{O_4} \to $ $KCl + 3F{e_2}{\left( {S{O_4}} \right)_3} + 3{H_2}O$
Which is True $(T)$ and False $(F)$ in the following sentence ?
The order of this reaction is $1$.