For $x\, \in \,R\,,\,x\, \ne \, - 1,$ if ${(1 + x)^{2016}} + x{(1 + x)^{2015}} + {x^2}{(1 + x)^{2014}} + ....{x^{2016}} = \sum\limits_{i = 0}^{2016} {{a_i\,}{\,x^i}} ,$ then $a_{17}$ is equal to

  • [JEE MAIN 2016]
  • A

    $\frac{{2017\,!\,}}{{17\,!\,2000\,!}}$

  • B

    $\frac{{2016\,!\,}}{{17\,!\,1999\,!}}$

  • C

    $\frac{{2016\,!\,}}{{16\,!}}$

  • D

    $\frac{{2017\,!\,}}{{2000\,!}}$

Similar Questions

If $\sum_{ r =0}^5 \frac{{ }^{11} C _{2 r +1}}{2 r +2}=\frac{ m }{ n }, \operatorname{gcd}( m , n )=1$, then $m - n$ is equal to _____

  • [JEE MAIN 2025]

Total number of terms in the expansion of $\left[ {{{\left( {1 + x} \right)}^{100}} + {{\left( {1 + {x^2}} \right)}^{100}}{{\left( {1 + {x^3}} \right)}^{100}}} \right]$ is

If n is a positive integer and ${C_k} = {\,^n}{C_k}$, then the value of ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =

The sum of coefficients in the expansion of ${(1 + x + {x^2})^n}$ is

If $C_{x} \equiv^{25} C_{x}$ and $\mathrm{C}_{0}+5 \cdot \mathrm{C}_{1}+9 \cdot \mathrm{C}_{2}+\ldots .+(101) \cdot \mathrm{C}_{25}=2^{25} \cdot \mathrm{k}$ then $\mathrm{k}$ is equal to

  • [JEE MAIN 2020]