Following sets of three forces act on a body. Whose resultant cannot be zero
$10, 10, 10$
$10, 10, 20$
$10, 20, 23$
$10, 20, 40$
The vectors $5i + 8j$ and $2i + 7j$ are added. The magnitude of the sum of these vector is
The magnitude of vectors $\overrightarrow{ OA }, \overrightarrow{ OB }$ and $\overrightarrow{ OC }$ in the given figure are equal. The direction of $\overrightarrow{ OA }+\overrightarrow{ OB }-\overrightarrow{ OC }$ with $x$-axis will be
Prove the associative law of vector addition.
Given below in Column $-I$ are the relations between vectors $\vec a \,$ $\vec b \,$ and $\vec c \,$ and in Column $-II$ are the orientations of $\vec a$, $\vec b$ and $\vec c$ in the $XY-$ plane. Match the relation in Column $-I$ to correct orientations in Column $-II$.
Column $-I$ | Column $-II$ |
$(a)$ $\vec a \, + \,\,\vec b \, = \,\,\vec c $ | $(i)$ Image |
$(b)$ $\vec a \, - \,\,\vec c \, = \,\,\vec b$ | $(ii)$ Image |
$(c)$ $\vec b \, - \,\,\vec a \, = \,\,\vec c $ | $(iii)$ Image |
$(d)$ $\vec a \, + \,\,\vec b \, + \,\,\vec c =0$ | $(iv)$ Image |
If the magnitude of sum of two vectors is equal to the magnitude of difference of the two vectors, the angle between these vectors is ........ $^o$