Find the zeroes of the polynomial in each of the following:
$p(x)=x-4$
$1$
$2$
$3$
$4$
Find the quotient and the remainder when $x^{3}+x^{2}-10 x+8$ is divided by
$x+3$
Expand
$(x+2 t)(x-5 t)$
The degree of polynomial $7 x^{5}-4 x^{4}+2\left(x^{3}\right)^{2}-x^{2}+35$ is $\ldots \ldots \ldots$
Without finding the cubes, factorise $(x-y)^{3}+(y-z)^{3}+(z-x)^{3} .$
Factorise :
$84-2 r-2 r^{2}$