Find the mean and variance of the frequency distribution given below:

$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\begin{array}{|c|c|c|c|c|} \hline x & f _{ i } & x _{ i } & f x _{ i } & f x _{ i }^{ 2 } \\ \hline 1-3 & 6 & 2 & 12 & 24 \\ \hline 3-5 & 4 & 4 & 16 & 64 \\ \hline 5-7 & 5 & 6 & 30 & 180 \\ \hline 7-10 & 1 & 8.5 & 8.5 & 72.25 \\ \hline \text { Total } & n=16 & & \Sigma f_{i} x_{i}=66.5 & \Sigma f_{i}{ }_{i}^{2}=340.25 \\ \hline \end{array}$

$\therefore \quad$ Mean $=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}=\frac{66.5}{16}=4.13$

And variance $=\sigma^{2}=\frac{\Sigma f_{i} x_{i}^{2}}{\Sigma f_{i}}-\left(\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}}\right)^{2}=\frac{340.25}{16}-(4.13)^{2}$

$\quad=21.2656-17.0569=4.21$

Similar Questions

Suppose a class has $7$ students. The average marks of these students in the mathematics examination is $62$, and their variance is $20$ . A student fails in the examination if $he/she$ gets less than $50$ marks, then in worst case, the number of students can fail is

  • [JEE MAIN 2022]

Find the standard deviation of the first n natural numbers.

 

If $\sum_{i=1}^{5}(x_i-10)=5$ and $\sum_{i=1}^{5}(x_i-10)^2=5$ then standard deviation of observations $2x_1 + 7, 2x_2 + 7, 2x_3 + 7, 2x_4 + 7$ and $2x_5 + 7$ is equal to-

The variance of the data $2, 4, 6, 8, 10$ is

If $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ then the standard deviation of $n$ observations $x _{1}, x _{2}, \ldots, x _{ n }$ is

  • [JEE MAIN 2020]