Find the following product :
$(2 x-y+3 z)\left(4 x^{2}+y^{2}+9 z^{2}+2 x y+3 y z-6 x z\right)$
We have,
$(2 x-y+3 z)\left(4 x^{2}+y^{2}+9 z^{2}+2 x y+3 y z-6 x z\right)$
$=\{2 x+(-y)+3 z\}\left\{(2 x)^{2}+(-y)^{2}+(3 z)^{2}-(2 x)(-y)-(-y)(3 z)-(3 z)(2 x)\right\}$
$=(2 x)^{3}+(-y)^{3}+(3 z)^{3}-3(2 x)(-y)(3 z)$ $\left[\because(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)=a^{3}+b^{3}+c^{3}-3 a b c\right]$
$=8 x^{3}-y^{3}+27 z^{2}+18 x y z$
Evaluate
$(98)^{2}$
Which one of the following is a polynomial?
Factorise
$\frac{4 x^{2}}{9}-\frac{x}{3}+\frac{1}{16}$
Find the value of the polynomial $x^{2}-7 x+12$ at.
$x=3$
Write whether the statement are True or False. Justify your answer.
A binomial may have degree $5$