Fill in the blanks in following table :

$P(A)$ $P(B)$ $P(A \cap B)$ $P (A \cup B)$
$\frac {1}{3}$ $\frac {1}{5}$ $\frac {1}{15}$  ........

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$P ( A )=\frac{1}{3}$,  $P ( B )=\frac{1}{5}$,  $P ( A \cap B )=\frac{1}{15}$

Here,

We know that $P ( A \cup B )= P ( A )+ P ( B )- P ( A \cap B )$

$\therefore P(A \cup B)$ $=\frac{1}{3}+\frac{1}{5}+\frac{1}{15}$ $=\frac{5+3-1}{15}$ $=\frac{7}{15}$

Similar Questions

For an event, odds against is $6 : 5$. The probability that event does not occur, is

For three events $A,B $ and $C$  ,$P ($ Exactly one of $A$ or $B$ occurs$)\, =\, P ($ Exactly one of $C$ or $A$ occurs $) =$ $\frac{1}{4}$ and $P ($ All the three events occur simultaneously $) =$ $\frac{1}{16}$ Then the probability that at least one of the events occurs is :

  • [JEE MAIN 2017]

One card is drawn at random from a well shuffled deck of $52$ cards. In which of the following cases are the events $E$ and $F$ independent ?

$\mathrm{E}:$  ' the card drawn is black ' 

$\mathrm{F}:$  ' the card drawn is a king '

If $A$ and $B$ are events such that $P(A \cup B) = 3/4,$ $P(A \cap B) = 1/4,$ $P(\bar A) = 2/3,$ then $P(\bar A \cap B)$ is

  • [AIEEE 2002]

Let ${E_1},{E_2},{E_3}$ be three arbitrary events of a sample space $S$. Consider the following statements which of the following statements are correct