Factorise $: x^{3}+x^{2}-26 x+24$
Sum of all the coefficients of terms of the polynomial
$=1+1-26+24$
$=26-26=0$
So, $(x-1)$ is a factor of $p(x)$
$x^{3}+x^{2}-26 x+24$
$=\underline{x^{3}}-x^{2}+\underline{2 x^{2}-2 x}-\underline{24 x+24}$
[Splitting the terms to get $x-1$ as a factor.]
$=x^{2}(x-1)+2 x(x-1)-24(x-1)$
$=(x-1)\left(x^{2}+2 x-24\right)$
$=(x-1)\left(x^{2}+6 x-4 x-24\right)$
[By splitting the middle term]
$=(x-1)[x(x+6)-4(x+6)]$
$=(x-1)(x+6)(x-4)$
If $x+1$ is a factor of the polynomial $2 x^{2}+k x,$ then the value of $k$ is
The degree of polynomial $7 x^{5}-4 x^{4}+2\left(x^{3}\right)^{2}-x^{2}+35$ is $\ldots \ldots \ldots$
Factorise
$6 x^{3}+7 x^{2}-14 x-15$
Classify the following as a constant, linear,quadratic and cubic polynomials:
$3 x^{3}$
If $49 x^{2}-b=\left(7 x+\frac{1}{2}\right)\left(7 x-\frac{1}{2}\right),$ then the value of $b$ is