Factorise $: x^{3}+x^{2}-26 x+24$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Sum of all the coefficients of terms of the polynomial

$=1+1-26+24$

$=26-26=0$

So, $(x-1)$ is a factor of $p(x)$

$x^{3}+x^{2}-26 x+24$

$=\underline{x^{3}}-x^{2}+\underline{2 x^{2}-2 x}-\underline{24 x+24}$

[Splitting the terms to get $x-1$ as a factor.]

$=x^{2}(x-1)+2 x(x-1)-24(x-1)$

$=(x-1)\left(x^{2}+2 x-24\right)$

$=(x-1)\left(x^{2}+6 x-4 x-24\right)$

[By splitting the middle term]

$=(x-1)[x(x+6)-4(x+6)]$

$=(x-1)(x+6)(x-4)$

Similar Questions

If $x+1$ is a factor of the polynomial $2 x^{2}+k x,$ then the value of $k$ is

The degree of polynomial $7 x^{5}-4 x^{4}+2\left(x^{3}\right)^{2}-x^{2}+35$ is $\ldots \ldots \ldots$

Factorise

$6 x^{3}+7 x^{2}-14 x-15$

Classify the following as a constant, linear,quadratic and cubic polynomials:

$3 x^{3}$

If $49 x^{2}-b=\left(7 x+\frac{1}{2}\right)\left(7 x-\frac{1}{2}\right),$ then the value of $b$ is