Factorise :
$2 x^{2}-7 x-15$
In order to factorise $2 x^{3}-7 x-15$, we have to find two numbers $p$ and $q$ such that
$p+q=-7$ and $p q=-30.$
Clearly, $(-10)+3=-7$ and $(-10) \times 3=-30 .$
So, we write the middle term $-7 x$ as $(-10 x)+3 x$.
$\therefore 2 x^{2}-7 x-15=2 x^{2}-10 x+3 x-15.$
$\therefore 2 x^{2}-7 x-15=2 x^{2}-10 x+3 x-15$
$=2 x(x-5)+3(x-5)$
$(x-5)(2 x+3)$
Find the quotient and the remainder when $x^{3}+x^{2}-10 x+8$ is divided by
$x-2$
Factorise
$16 x^{4}-y^{4}$
Evaluate
$(215)^{2}$
Expand:- $(x+3 y-5 z)^{2}$
Write the degree of each of the following polynomials
$8 x^{5}+3 x^{2}-4 x+7$