Factorise : $x^{3}-3 x^{2}-9 x-5$
$x^{3}-3 x^{2}-9 x-5$
We have $p(x)=x^{3}-3 x^{2}-9 x-5$
By trial, let us find : $p (1)=(1)^{3}-3(1)^{2}-9(1)-5=3-3-9-5$
$=-14 \neq 0 $
Now $p(-1)=(-1)^{3}-3(-1)^{2}-9(-1)-5=-1-3(1)+9-5$
$=-1-3+9-5=0$
$\therefore$ By factor theorem, $[ x -(-1)]$ is a factor of $p ( x )$.
Now, $\frac{x^{3}-3 x^{2}-9 x-5}{x-(-1)}=x^{2}-4 x-5$
$\therefore x^{2}-3 x^{2}-9 x-5 =(x+1)\left(x^{2}-4 x-5\right) $
$=(x+1)\left[x^{2}-5 x+x-5\right]$
[Splitting $-4$ into $-5$ and $+1$]
$=(x+1)[x(x-5)+1(x-5)]$
$=(x+1)[(x-5)(x+1)]$
$=(x+1)(x-5)(x+1)$
Find the zero of the polynomial : $p(x) = x -5$
Find the value of $k$, if $x -1$ is a factor of $p(x)$ in this case : $p(x)=x^{2}+x+k$.
If $x+y+z=0,$ show that $x^{3}+y^{3}+z^{3}=3 x y z$.
Factorise of the following : $27 y^{3}+125 z^{3}$
Expand each of the following, using suitable identities : $(-2 x+3 y+2 z)^{2}$