Equation of the ellipse whose axes are the axes of coordinates and which passes through the point  $(-3,1) $ and has eccentricity $\sqrt {\frac{2}{5}} $ is 

  • [AIEEE 2011]
  • A

    $5{x^2} + 3{y^2} - 48 = 0$

  • B

    $\;3{x^2} + 5{y^2} - 15 = 0$

  • C

    $\;5{x^2} + 3{y^2} - 32 = 0$

  • D

    $\;3{x^2} + 5{y^2} - 32 = 0$

Similar Questions

The radius of the circle having its centre at $(0, 3)$ and passing through the foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$, is

  • [IIT 1995]

The foci of $16{x^2} + 25{y^2} = 400$ are

Let $\mathrm{E}$ be an ellipse whose axes are parallel to the co-ordinates axes, having its center at $(3,-4)$, one focus at $(4,-4)$ and one vertex at $(5,-4) .$ If $m x-y=4, m\,>\,0$ is a tangent to the ellipse $\mathrm{E}$, then the value of $5 \mathrm{~m}^{2}$ is equal to $.....$

  • [JEE MAIN 2021]

The ellipse $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ is inscribed in a rectangle $R$ whose sides are parallel to the coordinate axes.

Another ellipse $E _2$ passing through the point $(0,4)$ circumscribes the rectangle $R$.. The eccentricity of the ellipse $E _2$ is

  • [IIT 2012]

The equations of the directrices of the ellipse $16{x^2} + 25{y^2} = 400$ are