Equal charges are given to two spheres of different radii. The potential will

  • A

    Be more on the smaller sphere

  • B

    Be more on the bigger sphere

  • C

    Be equal on both the spheres

  • D

    Depend on the nature of the materials of the spheres

Similar Questions

As shown in the figure, charges $ + q$ and $ - q$ are placed at the vertices $B$ and $C$ of an isosceles triangle. The potential at the vertex $A$ is

  • [AIIMS 2002]

The linear charge density on a dielectric ring of radius $R$ varies with $\theta $ as $\lambda \, = \,{\lambda _0}\,\cos \,\,\theta /2,$ where $\lambda _0$ is constant. Find the potential at the centre $O$ of ring. [in volt]

A charge $ + q$ is fixed at each of the points $x = {x_0},\,x = 3{x_0},\,x = 5{x_0}$..... $\infty$, on the $x - $axis and a charge $ - q$ is fixed at each of the points $x = 2{x_0},\,x = 4{x_0},x = 6{x_0}$,..... $\infty$. Here ${x_0}$ is a positive constant. Take the electric potential at a point due to a charge $Q$ at a distance $r$ from it to be $Q/(4\pi {\varepsilon _0}r)$. Then, the potential at the origin due to the above system of charges is

  • [IIT 1998]

A charge of total amount $Q$ is distributed over two concentric hollow spheres of radii $r$ and $R ( R > r)$ such that the surface charge densities on the two spheres are equal. The electric potential at the common centre is

  • [JEE MAIN 2020]

A solid sphere of radius $R$ is charged uniformly. At what distance from its surface is the electrostatic potential half of the potential at the centre?