Equal charges are given to two spheres of different radii. The potential will
Be more on the smaller sphere
Be more on the bigger sphere
Be equal on both the spheres
Depend on the nature of the materials of the spheres
Consider a sphere of radius $R$ with uniform charge density and total charge $Q$. The electrostatic potential distribution inside the sphere is given by $\theta_{(r)}=\frac{Q}{4 \pi \varepsilon_{0} R}\left(a+b(r / R)^{C}\right)$. Note that the zero of potential is at infinity. The values of $(a, b, c)$ are
A hemispherical bowl of mass $m$ is uniformly charged with charge density $'\sigma '$ . Electric potential due to charge distribution at a point $'A'$ is (which lies at centre of radius as shown).
Two point charges $-Q$ and $+Q / \sqrt{3}$ are placed in the xy-plane at the origin $(0,0)$ and a point $(2,0)$, respectively, as shown in the figure. This results in an equipotential circle of radius $R$ and potential $V =0$ in the $xy$-plane with its center at $(b, 0)$. All lengths are measured in meters.
($1$) The value of $R$ is. . . . meter.
($2$) The value of $b$ is. . . . . .meter.
The electric potential $V(x, y, z)$ for a planar charge distribution is given by:
$V\left( {x,y,z} \right) = \left\{ {\begin{array}{*{20}{c}}
{0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, < \, - d}\\
{ - {V_0}{{\left( {1 + \frac{x}{d}} \right)}^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\, - \,d\, \le x < 0}\\
{ - {V_0}\left( {1 + 2\frac{x}{d}} \right)\,\,\,\,\,\,\,\,\,\,\,for\,0\, \le x < d}\\
{ - 3{V_0}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,for\,x\, > \,d}
\end{array}} \right.$
where $-V_0$ is the potential at the origin and $d$ is a distance. Graph of electric field as a function of position is given as
Four electric charges $+q,+q, -q$ and $-q$ are placed at the comers of a square of side $2L$ (see figure). The electric potential at point $A,$ midway between the two charges $+q$ and $+q,$ is