Electric field in a certain region is given by $\overrightarrow{ E }=\left(\frac{ A }{ x ^2} \hat{ i }+\frac{ B }{ y ^3} \hat{ j }\right)$. The $SI$ unit of $A$ and $B$ are
$Nm ^3\,C ^{-1} ; Nm ^2 \,C ^{-1}$
$Nm ^2\, C ^{-1} ; Nm ^3 \,C ^{-1}$
$Nm ^3 \,C ; Nm ^2 \,C$
$Nm ^2 \,C ; Nm ^3\, C$
If time $(t)$, velocity $(u)$, and angular momentum $(I)$ are taken as the fundamental units. Then the dimension of mass $({m})$ in terms of ${t}, {u}$ and ${I}$ is
If force $F$ , velocity $V$ and time $T$ are taken as fundamental units then dimension of force in the pressure is
In the relation : $\frac{d y}{d x}=2 \omega \sin \left(\omega t+\phi_0\right)$ the dimensional formula for $\left(\omega t+\phi_0\right)$ is :
What is dimensional analysis ? Write limitation of dimensional analysis.