Electric charges of $1\,\mu C,\, - 1\,\mu C$ and $2\,\mu C$ are placed in air at the corners $A$, $B$ and $C$ respectively of an equilateral triangle $ABC$ having length of each side $10 \,cm$. The resultant force on the charge at $C$ is......$N$

  • A

    $0.9$

  • B

    $1.8$

  • C

    $2.7$

  • D

    $3.6$

Similar Questions

What is the net force on a $Cl^{-}$ placed at the centre of the bcc structure of $CsCl$

  • [AIIMS 2004]

Two charges, each equal to $q$, are kept at $x = -a$ and $x = a$ on the $x-$axis. A particle of mass $m$ and charge $q_0=\frac{q}{2}$ is placed at the origin. If charge $q_0$ is given a small displacement $(y < < a)$ along the $y-$axis, the net force acting on the particle is proportional to

  • [JEE MAIN 2013]

$12$ positive charges of magnitude $q$ are placed on a circle of radius $R$ in a manner that they are equally spaced. A charge $Q$ is placed at the centre, if one of the charges $q$ is removed, then the force on $Q$ is

  • [KVPY 2010]

The ratio of electrostatic and gravitational forces acting between electron and proton separated by a distance $5 \times {10^{ - 11}}\,m,$ will be (Charge on electron $=$ $1.6 \times 10^{-19}$ $C$, mass of electron = $ 9.1 \times 10^{-31}$ $kg$, mass of proton = $1.6 \times {10^{ - 27}}\,kg,$ $\,G = 6.7 \times {10^{ - 11}}\,N{m^2}/k{g^2})$

Explain vector form of Coulomb’s law and its importance. Write some important points for vector form of Coulomb’s law.