Electric charges $q, q, -2\,q$ are placed at the comers of an equilateral triangle $ABC$ of side $l$. The magnitude of electric dipole moment of the system is
$ql$
$2\,ql$
$\sqrt 3 \,ql$
$4\,ql$
Five point charges each having magnitude $'q'$ are placed at the corners of regular hexagon as shown in figure. Net electric field at the centre $'O'$ is $\vec E$ . To get net electric field at $'O'$ to be $6\vec E$ , charge placed on the remaining sixth corner should be
Two identical point charges are placed at a separation of $ l.$ $P$ is a point on the line joining the charges, at a distance $x$ from any one charge. The field at $P$ is $E$. $E$ is plotted against $x$ for values of $x$ from close to zero to slightly less than $l$. Which of the following best represents the resulting curve?
Four charges are placed at the circumference of a dial clock as shown in figure. If the clock has only hour hand, then the resultant force on a charge $q_0$ placed at the centre, points in the direction which shows the time as:
Two capacitors $C_1$ and $C_2 = 2\,C_1$ are connected in a circuit with a switch between them as shown in the figure. Initially the switch is open and $C_1$ holds charge $Q$. The switch is closed. At steady state, the charge on capacitors will be
A capacitor of capacitance $1$ $\mu F$ with stands the maximum voltages $6$ $KV$ while a capacitor of capacitance $2.0$ $\mu F$ with stands the maximum voltage $=$ $4\,KV$. if the two capacitors are connected in series, then the two capacitors combined can take up a maximum voltage of......$KV$