A capacitor of capacitance $1$ $\mu F$ with stands the maximum voltages $6$ $KV$ while a capacitor of capacitance $2.0$ $\mu F$ with stands the maximum voltage $=$ $4\,KV$. if the two capacitors are connected in series, then the two capacitors combined can take up a maximum voltage of......$KV$
$2.4 $
$5$
$9$
$10$
Two thin wire rings each having a radius $R$ are placed at a distance $d$ apart with their axes coinciding. The charges on the two rings are $+ q$ and $-q$. The potential difference between the centres of the two rings is
Two spherical conductors each of capacity $C$ are charged to potential $V$ and $-V$ . These are then connected by mean of a fine conducting wire. The loss of energy will be
As shown in the fig. charges $+\,q$ and $-\,q$ are placed at the vertices $B$ and $C$ of an isosceles triangle. The potential at the vertex $A$ is
A hollow cylinder has a charge $q$ coulomb within it. If $\phi $ is the electric flux in units of voltmete associated with the curved surface $B$ , the flux linked with the plane surface $A$ in units of volt-meter will be
The potential $V$ is varying with $x$ and $y$ as $V = \frac{1}{2}({y^2} - 4x)\,volts$ The field at $(1\,m,\,1\,m)$ is