During Kinetic study of reaction $2 A+B \rightarrow C+D$, the following results were obtained :
$A[M]$ | $B[M]$ |
initial rate of formation of $D$ |
|
$i$ | $0.1$ | $0.1$ | $6.0 \times 10^{-3}$ |
$ii$ | $0.3$ | $0.2$ | $7.2 \times 10^{-2}$ |
$ii$ | $0.3$ | $0.4$ | $2.88 \times 10^{-1}$ |
$iv$ | $0.4$ | $0.1$ | $2.40 \times 10^{-2}$ |
Based on above data, overall order of the reaction is $\qquad$
$2$
$3$
$4$
$5$
The conversion of $A \to B$ follows second order kinetics. Doubling the concentration of $A$ will increase the rate of formation of $B$ by a factor
Consider the following reaction,
$2 H _2( g )+2 NO ( g ) \rightarrow N _2( g )+2 H _2 O ( g )$
which following the mechanism given below:
$2 NO ( g ) \underset{ k _{-1}}{\stackrel{ k _1}{\rightleftharpoons}} N _2 O _2( g )$
$N _2 O _2( g )+ H _2( g ) \stackrel{ k _2}{\rightleftharpoons} N _2 O ( g )+ H _2 O ( g )$
$N _2 O ( g )+ H _2( g ) \stackrel{ k _3}{\rightleftharpoons} N _2( g )+ H _2 O ( g )$
(fast equilibrium)
(slow reaction)
(fast reaction)
The order of the reaction is
The reaction $2 A + B _{2} \rightarrow 2 AB$ is an elementary reaction.
For a certain quantity of reactants, if the volume of the reaction vessel is reduced by a factor of $3,$ the rate of the reaction increases by a factor of $.....$. (Round off to the Nearest Integer).
For a reaction $X + Y \to Z$, rate $ \propto \, [X]$. What is $(i)$ molecularity and $(ii)$ order of reaction ?
The rate of reaction, $A + B + C \longrightarrow P$ is given by
$r = \frac{{ - d\left[ A \right]}}{{dt}} = K\,{\left[ A \right]^{\frac{1}{2}}}\,{\left[ B \right]^{\frac{1}{2}}}\,{\left[ C \right]^{\frac{1}{4}}}$
The order of reaction is