Consider the following reaction,
$2 H _2( g )+2 NO ( g ) \rightarrow N _2( g )+2 H _2 O ( g )$
which following the mechanism given below:
$2 NO ( g ) \underset{ k _{-1}}{\stackrel{ k _1}{\rightleftharpoons}} N _2 O _2( g )$
$N _2 O _2( g )+ H _2( g ) \stackrel{ k _2}{\rightleftharpoons} N _2 O ( g )+ H _2 O ( g )$
$N _2 O ( g )+ H _2( g ) \stackrel{ k _3}{\rightleftharpoons} N _2( g )+ H _2 O ( g )$
(fast equilibrium)
(slow reaction)
(fast reaction)
The order of the reaction is
$3$
$4$
$5$
$6$
Write unit of rate constant of following reaction :
$1.$ $\frac {5}{2}$ order
$2.$ $n$ order
Consider the kinetic data given in the following table for the reaction $A + B + C \rightarrow$ Product.
Experiment No. | $\begin{array}{c}{[ A ]} \\ \left( mol dm ^{-3}\right)\end{array}$ | $\begin{array}{c}{[ B ]} \\ \left( mol dm ^{-3}\right)\end{array}$ | $\begin{array}{c}{[ C]} \\ \left( mol dm ^{-3}\right)\end{array}$ | Rate of reaction $\left( mol dm ^{-3} s ^{-1}\right)$ |
$1$ | $0.2$ | $0.1$ | $0.1$ | $6.0 \times 10^{-5}$ |
$2$ | $0.2$ | $0.2$ | $0.1$ | $6.0 \times 10^{-5}$ |
$3$ | $0.2$ | $0.1$ | $0.2$ | $1.2 \times 10^{-4}$ |
$4$ | $0.3$ | $0.1$ | $0.1$ | $9.0 \times 10^{-5}$ |
The rate of the reaction for $[ A ]=0.15 mol dm ^{-3},[ B ]=0.25 mol dm ^{-3}$ and $[ C ]=0.15 mol dm ^{-3}$ is found to be $Y \times 10^{-5} mol dm d ^{-3} s ^{-1}$. The value of $Y$ i. . . . . . .
If the concentration is expressed in moles per litre, the unit of the rate constant for a first order reaction is
The instantaneous rate of disappearance of $MnO_4^-$ ion in the following reaction is $4.56\times10^{-3}\,Ms^{-1}$, $2MnO_4^-+ 10I^-+ 16 H^+ \to 2 Mn^{2+} + 5I_2 + 8H_2O$ The rate of appearance $I_2$ is
Half-life period of a first order reaction is $1386$ seconds. The specific rate constant of the reaction is