ઋણ વિદ્યુતભારના વિદ્યુતક્ષેત્રની આકૃતિ દોરો.
કેન્દ્ર પર રહેલા બિંદુવત્ વિધુતભાર $\mathrm{q}$ ને ઘેરતા $\mathrm{r}$ ત્રિજ્યાના ગોળામાંથી પસાર થતાં ફલક્સ પરથી ગાઉસનો નિયમ મેળવો.
વિદ્યુત ફલક્સની વ્યાખ્યા આપો.
$2.4\, m$ નો વ્યાસ ધરાવતા એક સમાન વિદ્યુતભારિત ગોળા પર વિદ્યુતભારની પૃષ્ઠ ઘનતા $80.0\; \mu \,C/m^2$ છે. $(a)$ ગોળા પરનો વિદ્યુતભાર શોધો. $(b)$ ગોળાની સપાટીમાંથી બહાર જતું કુલ વિદ્યુત ફલક્સ કેટલું હશે?
કોઈ વિભાગનું વિદ્યુતક્ષેત્ર $\overrightarrow{ E }=\frac{2}{5} E _{0} \hat{ i }+\frac{3}{5} E _{0} \hat{ j }$ છે, જ્યાં $E _{0}=4.0 \times 10^{3}\, \frac{ N }{ C }$ છે. $Y - Z$ સમતલમાં $0.4 \,m ^{2}$ ક્ષેત્રફળ ધરાવતી સપાટીનું વિદ્યુતફ્લક્સ ....... $Nm ^{2} C ^{-1}$ હશે.
ખોટું વિધાન પસંદ કરો
$(a)$ ગાઉસિયન પૃષ્ઠમાં અંદર દાખલ થતી પૃષ્ઠ રેખા ઋણ ફ્લક્સ દર્શાવે છે.
$(b)$ $q$ વિદ્યુતભારને સમઘનના કેન્દ્ર પર મૂકવામાં આવે છે. બધા પૃષ્ઠમાંથી પસાર થતું ફ્લક્સ સમાન હશે.
$(c)$ સમાન વિદ્યુતક્ષેત્રમાં રહેલ શૂન્ય પરિણામી વિદ્યુતભાર ધરાવતા બંધ ગાઉસિયન પૃષ્ઠ સાથે સંકળાયેલ ફ્લક્સ શૂન્ય હોય.
$(d)$ જ્યારે વિદ્યુતક્ષેત્ર ગાઉસિયન પૃષ્ઠને સમાંતર હોય ત્યારે ફ્લક્સ અશૂન્ય હોય.
આપેલ વિકલ્પોમાંથી યોગ્ય વિકલ્પ પસંદ કરો.