$3 x^{4}-4 x^{3}-3 x-1$ को $x-1$ से भाग दीजिए।
By long division, we have :
$\overset{3{{x}^{3}}-{{x}^{2}}-x-4}{\mathop{\begin{align}
& x-1\sqrt{\begin{align}
& 3{{x}^{4}}-4{{x}^{3}}-3x-1 \\
& 3{{x}^{4}}-3{{x}^{3}} \\
\end{align}} \\
& \_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\
\end{align}}}\,$
$-{{x}^{3}}-3x-1$
$\mp \,\,{{x}^{3}}\,\,\pm \,\,\,{{x}^{2}}$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
$-x^{2}-3 x-1$
$\mp \,{{x}^{2}}\pm \,\,x$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
$-4 x-1$
$\mp \,\,4x\pm 1$
$\_\_\_\_\_\_\_\_\_\_\_\_\_\_$
$-5$
Here, the remainder is $-5 .$ Now, the zero of $x-1$ is $1 .$ So, putting $x=1$ in $p(x),$ we see that
$p(1)=3(1)^{4}-4(1)^{3}-3(1)-1$
$=3-4-3-1$
$=-\,5,$ which is the remainder.
$x^{3}+3 x^{2}+3 x+1$ को निम्नलिखित से भाग देने पर शेषफल ज्ञात कीजिए
$x+1$
$k$ का मान ज्ञात कीजिए जबकि निम्नलिखित स्थितियों में से प्रत्येक स्थिति में $(x-1), p(x)$ का एक गुणनखंड हो
$p(x)=x^{2}+x+k$
जाँच कीजिए कि $-2$ और $2$ बहुपद $x+2$ के शून्यक हैं या नहीं।
उपयुक्त सर्वसमिकाओं का उपयोग करके निम्नलिखित गुणनफल ज्ञात कीजिए
$(i)$ $(x+3)(x+3)$
$(ii)$ $(x-3)(x+5)$
वास्तव में घनों का परिकलन किए बिना निम्नलिखित में से प्रत्येक का मान जात कीजिए
$(-12)^{3}+(7)^{3}+(5)^{3}$