Determine which of the following polynomials has $x-2$ a factor :
$3 x^{2}+6 x-24$
$4 x^{2}+ x-2$
We know that if $(x-a)$ is a factor of $p ( x )$, then $p ( a )=0$.
$(i)$ Let $P(x)=3 x^{2}+6 x-24$
If $x-2$ is a factor of $p(x)=3 x^{2}+6 x-24,$ then $p(2)$ should be equal to $0 .$
Now, $p(2)=3(2)^{2}+6(2)-24$
$=3(4)+6(2)-24$
$=12+12-24$
$=0$
$\therefore$ By factor theorem, $(x-2)$ is factor of $3 x^{2}+6 x-24.$
$(ii)$ Let $p(x)=4 x^{2}+x-2$
If $x-2$ is a factor of $p(x)=4 x^{2}+x-2,$ then, $p(2)$ should be equal to $0 .$
Now, $\quad p(2)=4(2)^{2}+2-2$
$=4(4)+2-2$
$=16+2-2$
$=16 \neq 0$
$\therefore x-2$ is not a factor of $4 x^{2}+x-2$
Evaluate
$205 \times 195$
Classify the following polynomials as polynomials in one variable, two variables etc.
$x^{2}-2 x y+y^{2}+1$
With the help of the remainder theorem, find the remainder when the polynomial $x^{3}+x^{2}-26 x+24$ is divided by each of the following divisors
$x+6$
Factorise
$x^{3}+8 x^{2}+9 x-18$
Write the coefficients of $x^{2}$ in each of the following polynomials
$3 x^{3}-8 x^{2}+14 x-5$