व्यवस्थात्मकतः निम्नलिखित में संगत समविभव पृष्ठ का वर्णन कीजिएः
$(a)$ $Z-$दिशा में अचर विद्युत क्षेत्र
$(b)$ एक क्षेत्र जो एकसमान रूप से बढ़ता है, परंतु एक ही दिशा ( मान लीजिए $z-$ दिशा) में रहता है।
$(c)$ मूल बिंदु पर कोई एकल धनावेश, और
$(d)$ एक समतल में समान दूरी पर समांतर लंबे आवेशित तारों से बने एकसमान जाल।
$(a)$ Equidistant planes parallel to the $x -y$ plane are the equipotential surfaces.
$(b)$ Planes parallel to the $x -y$ plane are the equipotential surfaces with the exception that when the planes get closer, the field increases.
$(c)$ Concentric spheres centered at the origin are equipotential surfaces.
$(d)$ A periodically varying shape near the given grid is the equipotential surface. This shape gradually reaches the shape of planes parallel to the grid at a larger distance.
बल की विद्युत रेखाओं एवं समविभवीय तल के बीच का कोण है :
समरूप विद्युत क्षेत्र किसी क्षेत्र में धनात्मक $x$-दिशा की ओर इंगित है। माना $A$ मूलबिन्दु है, $B$, $x$-अक्ष पर $x = + 1$ सेमी. पर बिन्दु है तथा $C$ $y$-अक्ष पर $y = + 1$ सेमी. पर एक बिन्दु है तो बिन्दुओं $A$, $B$ व $C$ पर विभव निम्न सम्बंध से सन्तुष्ट होंगे
निम्न चित्र में समविभव बिन्दु होंगे
एक अनन्त कुचालक चादर के एक सतह पर आवेश घनत्व $\sigma = 0.10\, \mu C/m^2$ है। यदि इसके विद्युत क्षेत्र में दो समविभवी सतहों के मध्य विभवान्तर $50\, V$ है तो इनके मध्य की दूरी होगी
$R$ त्रिज्या के किसी एकसमान आवेशित ठोस गोले के पृष्ठ का विभव $V_{0}$ है $(\infty$ के सापेक्ष मापा गया)। इस गोले के लिये, $\frac{3 V_{0}}{2}, \frac{5 V_{0}}{4}, \frac{3 V_{0}}{4}$ तथा $\frac{V_{0}}{4}$ विभवो वाले समविभवी पृष्ठों को त्रिज्यायें, क्रमश: $R_{1}, R_{2}, R_{3}$ तथा $R_{4}$ हैं, तो,