Derive the equation for variation of $g$ due to height from the surface of earth.
Consider a point mass $m$ at a height $h$ above the surface of the earth as shown in figure. This body placed at point $\mathrm{P}$ from the distance $h\left(r>\mathrm{R}_{\mathrm{E}}\right)$ from the surface of earth.
Radius of earth is $\mathrm{R}_{\mathrm{E}}$.
Its distance from the centre of the earth is $r=\mathrm{R}_{\mathrm{E}}+h$
The magnitude of force on the body,
$\mathrm{F}(h) =\frac{\mathrm{GM}_{\mathrm{E}} m}{\left(\mathrm{R}_{\mathrm{E}}+h\right)^{2}}$
$\therefore \frac{\mathrm{F}(h)}{m} =\frac{\mathrm{GM}_{\mathrm{E}}}{\left(\mathrm{R}_{\mathrm{E}}+h\right)^{2}}$
$\therefore$ Acceleration due to gravity at height $h$ from the surface of earth,
$g(h)=\frac{\mathrm{GM}_{\mathrm{E}}}{\left(\mathrm{R}_{\mathrm{F}}+h\right)^{2}}$ $......(1)$
Acceleration due to gravity on the surface of earth,
$g\left(\mathrm{R}_{\mathrm{E}}\right)=\frac{\mathrm{GM}_{\mathrm{E}}}{\mathrm{R}_{\mathrm{E}}^{2}}$ $......(2)$
Taking ratio of equation $( 1 )$ and $(2)$,
$\frac{g(h)}{g\left(\mathrm{R}_{\mathrm{E}}\right)}=\frac{\mathrm{GM}_{\mathrm{E}}}{\left(\mathrm{R}_{\mathrm{E}}+h\right)^{2}} \times \frac{\mathrm{R}_{\mathrm{E}}^{2}}{\mathrm{GM}_{\mathrm{E}}}$
$\therefore g(h)=g\left(\frac{\mathrm{R}_{\mathrm{E}}^{2}}{\left(\mathrm{R}_{\mathrm{E}}+h\right)^{2}}\right)\left[\because g\left(\mathrm{R}_{\mathrm{E}}\right)=g\right]$
$\therefore g(h) =g \frac{1}{\left(1+\frac{h}{\mathrm{R}_{\mathrm{E}}}\right)^{2}}$ $......(3)$
$=g\left(1+\frac{h}{\mathrm{R}_{\mathrm{E}}}\right)^{-2}$
$\therefore g(h) =g\left(1-\frac{2 h}{\mathrm{R}_{\mathrm{E}}}\right)$ $......(4)$
( $\because$ Taking two terms in using binomial expression)
Equation $(4)$ tells that for small heights $h$ above the value of $g$ decreased by a factor $\left(1-\frac{2 h}{\mathrm{R}_{\mathrm{E}}}\right)$
Equation $(3)$ can be used for any height, while
equation $(4)$ used only for $h<\mathrm{R}_{\mathrm{E}}$.
A spring balance is graduated on sea level. If a body is weighed with this balance at consecutively increasing heights from earth's surface, the weight indicated by the balance
Acceleration due to gravity $'g'$ for a body of mass $'m'$ on earth's surface is proportional to (Radius of earth$=R$, mass of earth$=M$)
The height at which the weight of the body become $\frac{1}{9}^{th}$. Its weight on the surface of earth (radius of earth $R$)
Two satellites $\mathrm{P}$ and $\mathrm{Q}$ are moving in different circular orbits around the Earth (radius $R$ ). The heights of $\mathrm{P}$ and $\mathrm{Q}$ from the Earth surface are $h_{\mathrm{p}}$ and $h_{\mathrm{Q}}$, respectively, where $h_{\mathrm{p}}=\mathrm{R} / 3$. The accelerations of $\mathrm{P}$ and $\mathrm{Q}$ due to Earth's gravity are $g_{\mathrm{p}}$ and $g_{\mathrm{Q}}$, respectively. If $g_{\mathrm{p}} / g_{\mathrm{Q}}=36 / 25$, what is the value of $h_Q$ ?
Weight of a body of mass $m$ decreases by $1\%$ when it is raised to height $h$ above the Earth's surface. If the body is taken to a depth $h$ in a mine, then its weight will