Coordinates of the centre of the circle which bisects the circumferences of the circles
$x^2 + y^2 = 1 ; x^2 + y^2 + 2x - 3 = 0$ and $x^2 + y^2 + 2y - 3 = 0$ is
$(-1, -1)$
$(3, 3)$
$(2, 2)$
$(- 2, - 2)$
The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is
In the co-axial system of circle ${x^2} + {y^2} + 2gx + c = 0$, where $g$ is a parameter, if $c > 0$ then the circles are
If a circle passes through the point $(1, 2)$ and cuts the circle ${x^2} + {y^2} = 4$ orthogonally, then the equation of the locus of its centre is
The radical centre of three circles described on the three sides of a triangle as diameter is
Let $C_i \equiv x^2 + y^2 = i^2 (i = 1,2,3)$ are three circles. If there are $4i$ points on circumference of circle $C_i$. If no three of all the points on three circles are collinear then number of triangles which can be formed using these points whose circumcentre does not lie on origin, is-