Consider the statement : "For an integer $n$, if $n ^{3}-1$ is even, then $n$ is odd." The contrapositive statement of this statement is

  • [JEE MAIN 2020]
  • A

    For an integer $n ,$ if $n ^{3}-1$ is not even, then $n$ is not odd

  • B

    For an integer $n,$ if $n$ is even, then $n^{3}-1$ is odd.

  • C

    For an integer $n ,$ if $n$ is odd, then $n ^{3}-1$ is even.

  • D

    For an integer $n ,$ if $n$ is even, then $n ^{3}-1$ is even.

Similar Questions

Statement $-1$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is equivalent to $p \leftrightarrow q$

Statement $-2$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is a tautology.

The Boolean Expression $\left( {p\;\wedge \sim q} \right)\;\;\vee \;q\;\;\vee \left( { \sim p\wedge q} \right)$ is equivalent to:

  • [JEE MAIN 2016]

For the statements $p$ and $q$, consider the following compound statements :

$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$

$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$

Then which of the following statements is correct?

  • [JEE MAIN 2021]

The Boolean expression $\left( {\left( {p \wedge q} \right) \vee \left( {p \vee  \sim q} \right)} \right) \wedge \left( { \sim p \wedge  \sim q} \right)$ is equivalent to

  • [JEE MAIN 2019]

The compound statement $(\mathrm{P} \vee \mathrm{Q}) \wedge(\sim \mathrm{P}) \Rightarrow \mathrm{Q}$ is equivalent to:

  • [JEE MAIN 2021]