Consider the inferences given below in respect of the following current loop of wire kept is a magnetic field $\vec B$
$A.$ The force on the element $AC$ of the wire is $\frac{{\sqrt 3 }}{2}\,ILB$ directed into the page
$B.$ The force on the element $AB$ of the wire is $\frac{{\sqrt 3 }}{2}\,ILB$ directed into the page
$C.$ The total force on the loop $ABCA$ is zero.
Which of the above is /are not true ?
$A$ and $B$
$B$ only
$A$ and $C$ only
$B$ and $C$
A uniform conducting wire $ABC$ has a mass of $10\,g$. A current of $2\,A$ flows through it. The wire is kept in a uniform magnetic field $B = 2T.$ The acceleration of the wire will be
Two long current carrying conductors are placed parallel to each other at a distance of $8 \,cm$ between them. The magnitude of magnetic field produced at mid-point between the two conductors due to current flowing in them is $300 \,\mu T$. The equal current flowing in the two conductors is ...............
The circuit in figure consists of wires at the top and bottom and identical springs as the left and right sides. The wire at the bottom has a mass of $10\, g$ and is $5\, cm$ long. The wire is hanging as shown in the figure. The springs stretch $0.5\, cm$ under the weight of the wire and the circuit has a total resistance of $12\, \Omega $. When the lower wire is subjected to a static magnetic field, the springs, stretch an additional $0.3\, cm$. The magnetic field is
A conducting loop carrying a current $I$ is placed in a uniform magnetic field pointing into the plane of the paper as shown. The loop will have a tendency to
A conductor $ABCDE$, shaped as shown, carries a current i. It is placed in the $xy$ plane with the ends $A$ and $E$ on the $x$-axis. $A$ uniform magnetic field of magnitude $B$ exists in the region. The force acting on it will be