Consider the following statements
$P :$ Suman is brilliant
$Q :$ Suman is rich
$R :$ Suman is honest
The negation of the statement "Suman is brilliant and dishonest if and only if Suman is rich" can be expressed as
$\; \sim \left( {{\rm{Q}} \leftrightarrow \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right)} \right)$
$ \sim {\rm{Q}} \leftrightarrow {\rm{\;}} \sim {\rm{P}} \wedge {\rm{R}}$
${\rm{\;}} \sim \left( {{\rm{P}} \wedge {\rm{\;}} \sim {\rm{R}}} \right) \leftrightarrow Q$
$\; \sim P \wedge \left( {{\rm{Q\;}} \leftrightarrow \sim {\rm{R}}} \right)$
The statement $( p \wedge(\sim q )) \Rightarrow( p \Rightarrow(\sim q ))$ is
Consider the following statements :
$P$ : Suman is brilliant
$Q$ : Suman is rich.
$R$ : Suman is honest
the negation of the statement
"Suman is brilliant and dishonest if and only if suman is rich" can be equivalently expressed as
The logical statement $(p \Rightarrow q){\wedge}(q \Rightarrow \sim p)$ is equivalent to
The maximum number of compound propositions, out of $p \vee r \vee s , p \vee P \vee \sim s , p \vee \sim q \vee s$,
$\sim p \vee \sim r \vee s , \sim p \vee \sim r \vee \sim s , \sim p \vee q \vee \sim s$, $q \vee r \vee \sim s , q \vee \sim r \vee \sim s , \sim p \vee \sim q \vee \sim s$
that can be made simultaneously true by an assignment of the truth values to $p , q , r$ and $s$, is equal to
Which of the following is equivalent to the Boolean expression $\mathrm{p} \wedge \sim \mathrm{q}$ ?