Consider the equation $(1+a+b)^2=3\left(1+a^2+b^{2})\right.$ where $a, b$ are real numbers. Then,
there is no solution pair $(a, b)$
there are infinitely many solution pairs $(a, b)$
there are exactly two solution pairs $(a, b)$
there is exactly one solution pair $(a, b)$
Let $\mathrm{x}_1, \mathrm{x}_2, \mathrm{x}_3, \mathrm{x}_4$ be the solution of the equation $4 x^4+8 x^3-17 x^2-12 x+9=0$ and $\left(4+x_1^2\right)\left(4+x_2^2\right)\left(4+x_3^2\right)\left(4+x_4^2\right)=\frac{125}{16} m$. Then the value of $\mathrm{m}$ is..........
The number of distinct real roots of the equation $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$, is ...........
If the roots of the equation $8{x^3} - 14{x^2} + 7x - 1 = 0$ are in $G.P.$, then the roots are
Let $\lambda \in R$ and let the equation $E$ be $| x |^2-2| x |+|\lambda-3|=0$. Then the largest element in the set $S =$ $\{ x +\lambda: x$ is an integer solution of $E \}$ is $..........$
Let $y = \sqrt {\frac{{(x + 1)(x - 3)}}{{(x - 2)}}} $, then all real values of $x$ for which $y$ takes real values, are