Circles ${(x + a)^2} + {(y + b)^2} = {a^2}$ and ${(x + \alpha )^2}$ $ + {(y + \beta )^2} = $ ${\beta ^2}$ cut orthogonally, if

  • A

    $a\alpha + b\beta = {b^2} + {\alpha ^2}$

  • B

    $2(a\alpha + b\beta ) = {b^2} + {\alpha ^2}$

  • C

    $a\alpha + b\beta = {a^2} + {b^2}$

  • D

    None of these

Similar Questions

The equation of the circle which passes through the origin, has its centre on the line $x + y = 4$ and cuts the circle ${x^2} + {y^2} - 4x + 2y + 4 = 0$ orthogonally, is

The condition of the curves $a{x^2} + b{y^2} = 1$and $a'{x^2} + b'{y^2} = 1$ to intersect each other orthogonally, is

The circle passing through the intersection of the circles, $x^{2}+y^{2}-6 x=0$ and $x^{2}+y^{2}-4 y=0$ having its centre on the line, $2 x-3 y+12=0$, also passes through the point

  • [JEE MAIN 2020]

A circle $C_1$ of radius $2$ touches both $x$ -axis and $y$ -axis. Another circle $C_2$ whose radius is greater than $2$ touches circle $C_1$ and both the axes. Then the radius of  circle $C_2$ is-

The two circles ${x^2} + {y^2} - 2x + 22y + 5 = 0$ and ${x^2} + {y^2} + 14x + 6y + k = 0$ intersect orthogonally provided $k$ is equal to